Michael Andrés Lin

www.michaelalin.com • github.com/michaellin • mlinyang@stanford.edu

Professional Experience

Graduate Research Assistant

2019 - Present

Stanford University - Biomimetics & Dexterous Manipulation Lab Advisor: Mark Cutkosky

- Investigating robot designs optimized for dynamic contact interactions. Developing perception methods to leverage these designs for sensing unstructured environments through contact and multi-modal sensing.
- Developed a low-impedance robot gripper that enables contacts with selective sensing or action on the environment. Demonstrated a Particle Filtering algorithm to localize objects to sub-mm accuracy through multiple contacts.
- Developed reactive controllers that integrate whole-arm tactile sensing to safely reach into constrained spaces.

Robotics System Engineer

2017 - 2019

Flexiv Robotics (Santa Clara, CA)

- Architected system design that integrates robot sensors and actuators to enable robust, efficient, and ISO safety-compliant control of a 7-DOF torque-controlled manipulator.
- Developed high performance position and torque controller for smooth motion tracking.

Graduate Research Assistant

2015 - 2017

Stanford University - Biomimetics & Dexterous Manipulation Lab Advisors: Dr. Bruce Daniel, Dr. Mark Cutkosky

- Developed surgical navigation system for needle insertion.
- Implemented computer vision tracking integrated with shapesensing needles to provide physicians with real-time visualizations which resulted in improved procedure accuracy.

Undergraduate Research Assistant

Summer 2014

Stanford University - CHARM Lab - Advisor: Allison Okamura

Designed a hand-held haptic gripper for robotic teleoperation control during surgery to reduce tissue damage.

Relevant Publications

- Leveraging Safe Contact to Facilitate Manipulation in Cluttered Spaces (IEEE Robotics & Automation Letters 2021)
 M A Lin, R Thomasson, G Uribe, H Choi, M R Cutkosky
- ► A Stretchable Tactile Sleeve for Reaching into Cluttered Spaces (IEEE Robotics & Automation Letters 2021)

 A M Gruebele, M A Lin, D Brouwer, S Yuan, A Zerbe, M R Cutkosky

Honors & Awards

NSF GRFP, Stanford School of Engineering Fellowship, Best Poster Award (of 113 posters) at Stanford Bio-X IIP Symposium, 1st place NATCAR Competition (autonomous race-car)

Education

Stanford University

PhD Mechanical Engineering Robotics & State Estimation 2019 - Present

Stanford University

MS Mechanical Engineering Dynamics, Robotics, Mechatronics 2015 - 2017

University of California Berkeley

Electrical Engineering & Computer Science (GPA: 3.79 Honors Program) Embedded Systems & Signals

2011 - 2015

Technical Skills

Coding	C++, Python, C (Low
	level), MATLAB, C#
Libraries &	PyBullet, PyTorch,
Toolkits	OpenCV, Qt-5, ROS,
	Movelt!, Gazebo,
	RBDL, Unity 3D
Embedded	State machines, SPI,
Systems	I2C, UART, EtherCAT,
-	BLE, PSOC
Hardware	Motor control, circuit
	design & testing,
	CAD modeling, rapid
	prototyping

Project Highlights

Tactile-visuo Search in Clutter

 Scene state estimation using combining visual depth and tactile sensor data using Gaussian Process Implicit Surface (GPIS).

Path Planning Under Uncertainty for Steerable Needles

 Path planning for biopsy needle insertion using Partially Observable Monte Carlo Planning (POMCP).

Summarization with Pointer-Generator Networks

 Better abstractive text summaries by penalizing word copying.