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Abstract—Robots executing tasks in home environments face
the challenge of large uncertainty over the space they need
to interact with. In this work we look into the problem of
reaching into a cupboard-like environment to fetch a spice jar
that could be occluded by other objects in the scene. We are
interested in integrating both vision and tactile measurements in
order to create a map of the environment, which can be used
to inform where the target object is and also used to create
motion plans to execute the task. We investigate using Gaussian
Process Implicit Surfaces (GPIS) for integrating measurements
from both sensing modalities into one common representation of
the scene. In particular, we use vision to construct a prior and
tactile measurements subsequently to update this GPIS map.

Index Terms—Manipulation under uncertainty, tactile explo-
ration, perception for grasping and manipulation.

I. INTRODUCTION

There is still a large gap between the the ability of robots
to execute tasks in unstructured environments in contrast to
that of humans. For instance, we are able to seamlessly open
a cupboard in the kitchen and take a “quick peek” at what is
inside, then reach in with our hands and navigate through a
clutter of objects only using our sense of touch until finding
a desired object. For a robot, this is a daunting tasks as there
is a lot of uncertainty to reason over, sensing needs to be
multi-modal as both vision and tactile sensing might be needed
to execute efficiently, and plans to reach the object might
be complex sequential actions. Although there are multiple
parts to this problem, the scope of this work focuses on
perception and state estimation of a scene from visual and
tactile measurements.

Visual and tactile sensing are very different in nature, so
finding a common ground for representing these measurements
is important. A spatial representation is a good option, but
there are many flavors of representations such as voxel [1],
superquadrics [2], point clouds [3], but Dragiev et al. shows
that Gaussian Process Implicit Surface (GPIS) has many
benefits for this application as it can be used to incorporate
point clouds from depth camera measurements and it is also
favorable for tactile measurements as it can use both contact
points and contact normals for updating the representation [4].
In addition, GPIS inherently encodes variance in the spatial
representation, so we can use this confidence map to determine
regions that have been less explored to determine next robot
motion, or use this map to guess where hidden objects may
be if we cannot identify them at first sight. Finally, GPIS
can be approximately used as a signed-distance function to

obstacles which is useful for finding collision-free paths for
motion planning.

In this work we will develop a system that will construct
a prior belief from an initial depth view of a cupboard with
multiple objects (illustrated in Fig. 1), and we will update
this GPIS from subsequent tactile measurements. A difference
from previous work is that we will be building off from our
custom made robot gripper [5] that can perform non-intrusive
contacts with objects. The advantage of non-intrusive contacts
is that as the robot reaches into the cupboard, it can gather
contact measurements of objects without disturbing their state,
thus, preserving the initial depth camera measurements. In
general, allowing for contact sensing that do not disturb the
state of the environment makes measurements more coherent
and estimates more accurate.

Fig. 1. Exploratory Hand reaching into a cupboard and touching free-standing
objects.

II. PREVIOUS WORK

The problem of reaching into a cabinet of free-standing
objects to retrieve an object among clutter (also known as
Mechanical Search) has been done recently by Huang et al. [6].
Part of their contribution was to develop a perception model to
predict an occupancy distribution map of a target object given
a depth image of the scene [7]. The drawback of this approach
is that as the robot arm reaching in it blocks line-of-sight to
the scene, so after every action on the scene the robot arm has
to retract to take new sensor measurements. We are interested
in improving this work by enabling a robot arm to use both
vision and touch such that it will only need to reach into the
cabinet once without retracting, and search for a target object
based on touch.



Occupancy distribution maps are useful for inferring where
a hidden target object could be but they are not good for
tracking the state of the scene (i.e. the shape of the envi-
ronment). For this we can use GPIS which have been shown
to be good candidates for incorporating tactile [4] and visual
measurements [8]. Most recently, Suresh et al. demonstrated
using GPIS in a Simultaneous Localization and Mapping
(SLAM) problem to estimate the location and shape of a block
being pushed on a surface from tactile measurements [9].
Although the results shown are impressive, it is a complex
system that runs a heavy SLAM algorithm (iSAM2) and
Bayesian regression, and results of the physical experiment
rely on good models of sliding object dynamics on a surface
which is difficult to predict accurately. The common problem
of most of these previous work is that contacts are an intrusive
way of sensing; the act of sensing perturbs the state of the
object. This results in needing to do localization and shape
sensing simultaneously. However, non-intrusive contacts are
also achievable but it is necessary to approach the problem
from low-level design as shown by Lin et al. [5].

Using Exploratory Hand [5] to sense through contacts, we
will be able to achieve more accurate estimates of a scene
since the state of the environment will not be changing. Also,
we will be able to scale to an entire scene as opposed to just
a single object as most of previous work have done.

III. PROBLEM FORMULATION
A. Gaussian Process Implicit Shape with Vision and Touch

We need the GPIS update equations for both vision and
tactile measurements. Depth image provide us with 3D point
measurements of object surfaces. Since for the task of interest
we only have line-of-sight initially, we will process these
depth measurements into an initial GPIS (our prior). These
point measurements can be turned into a GPIS similar to
how previous work have done [4], [10] using the following
regression equations
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where k is the covariance function, k., is the vector of
covariances between the test point and all observation points,
K is the covariance matrix, 072u 4 1s the depth measurement
variance, y is the observed values and x, are the test points
(for which we use a grid map for plotting purposes).

Similar to [! 1], we use a thin plate model for the kernel
function
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where v is a hyperparameter but can be easily specified
as the farther distance among all the training inputs (i.e.
mazx(||z* —27]|),Vz?, 29 € X). This kernel function is advan-
tageous because it provides for a good first-order continuity
as opposed to a exponential kernel function. Illustratively, it
makes the mean value outside of the cluster of training points

taper off away from zero whereas an exponential function
drives the mean to zero (which is a problem since our 2D
shapes are determined using the O-level set) [12].

To incorporate subsequent tactile measurements we can also
use equations 1 and 2, but some modifications need to be done
in computing the covariance between points x* and normal
measurements w’, and normal measurements w® and normal
measurements w’. As shown by Dragiev et al. and Li et al., the
contact point and contact normal measurements from tactile
sensors provide a dual update of the mean of the GPIS and the
gradient at those points, respectively [4], [11]. The covariance
function for these two are:
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where m,n € {1,2}, k is the thin plate kernel function, w,y,
is the contact normal at x,, and w,, is the contact normal at
Tp.

In combining the depth and tactile sensing data, we get a
training set X with a mix of surface points without normal
measurements x, and surface points with their respective
normal measurements x,,. In order to combine both of these
in the Bayesian regression we need to re-format the covariance
matrix K € R*3™ where n is the number of depth sensor
points and m is the number of tactile sensor measurements.
K is a block diagonal matrix with the following (3x3), (3x1),
(1x3) and (1x1) blocks:
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In addition to these kernel matrix modifications, it is also
possible to model different sensor noise for both sensing
modalities. This can be done through using different noise



variance o2 in equation 2. In general, depth measurements

have a much larger noise variance compared to tactile mea-
surements since the latter relies on high accuracy robot pro-
prioception as shown in [5].

IV. METHODS
A. Simulated System for Depth and Tactile Sensor Acquisition

For this work we used PyBullet to simulate the environment
for the task of reaching into a constrained space as shown in
Fig. 2. For scope of this project we only worked with three
spice jars that are near each other and we use round and square
spice jars in different experiments.

Fig. 2. PyBullet Simulation of a robot manipulator (Universal Robot URS5
with Exploratory Hand end-effector).

1) Camera Measurements: Before reaching towards the
objects, we take an initial camera measurement of the group
of objects from the robot perspective (Shown in Fig. 3).
The 3D point cloud is obtained from the depth measurement
by backprojecting the depth camera pixels through the ex-
trinsic and intrinsic camera matrices (details can be found
in https://tinyurl.com/ywv5k6w8). Since we are tackling the
problem in 2D for now we took a cross-sectional slice from
the 3D point cloud and flattened it to 2D point clouds as shown
in Fig. 3 bottom left. Finally, we added different amounts of
Gaussian White Noise to simulate a real sensor as shown in
the figure bottom right.

2) Motion Planning and Tactile Measurements: Tactile
measurements were gathered by controlling the robot to make
contact with the object and follow different robot end-effector
trajectories. The robot arm position was controlled in Cartesian
space and the Exploratory finger of the gripper was controlled
to render very low impedance such that it would exert small
forces when making contact with the objects. To gather tactile
measurements we move the gripper to make contact with the
long edge of the finger and then control to re-orient the gripper
such that the contact point moves on the surface of the object
as shown in Fig. 4. It is easy from this figure to see that
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Fig. 3. Depth camera measurements from PyBullet. Top left shows the depth
2D image, top right the converted 3D point cloud by back-projecting, bottom
left is a 2D cross section of the 3D point cloud and bottom right is that 2D
point cloud with added white noise to simulate real sensor noise.

vision only provides a very limited view of the object shapes
and tactile is able to complement these on object regions that
cannot be observed. The point and normal measurements are
given by the simulator.
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Fig. 4. Combined tactile and visual measurements. Left plot uses square
objects and right plot uses round objects. A challenge with square objects
is that it creates sparsity on the tactile measurements due to the two objects
having flat surfaces.

3) More details on GPIS Implementation: In addition to
the visual measurement prior we also use a circular prior (four
points equally spaced on the circle perimeter with respective
normal vectors). This is helpful as the normal measurements
help in starting to shape the GPIS in the Z axis, otherwise the
GPIS will just have zero mean as the depth measurements at
only point measurements at the O-level set. For visualization
of the GPIS we use a set of evenly distributed points as the
test set Y.

V. RESULTS & DISCUSSIONS

In Fig 5 we can see that only by incorporating the prior
depth camera measurements the GPIS already start taking
shape of the objects. In the plot to the right we can see


https://tinyurl.com/ywv5k6w8

that where the blue colored regions coincide with where we
have measurements, thus, lower variance. Note that this initial
GPIS is very useful for the task of reaching into clutter as
we can easily object regions in the map with high variance
(red regions) and use this map to decide where to begin
exploring with the robot gripper to gain a better estimate of
the environment.
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Fig. 5. GPIS prior with only depth data. The 2D shapes are derived from the
GPIS such that negative mean values correspond to within the object (in the
figure brighter colors correspond to inside the objects).

After incorporating the tactile measurements we get a more
complete shape on the round spice jars at the top and bottom
as can be seen in Fig. 7. They become much close to the
ground truth shape shown in magenta.
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Fig. 6. GPIS with depth and tactile data on round spice jars.

As can be seen from Fig. 7, this method works well when
performed on non-circulat objects such as squared spice jars.

Although the examples shown until now worked, there
were some combination of parameters that yielded bad results
as seen in Fig. 8. One example is changing circular prior
mentioned in section B.3. If the circle is made too large
compared to the shape of the objects than the shape estimate
are very off. This is likely because adding this circular prior
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Fig. 7. GPIS with depth and tactile data on round square jars.

is basically faking data to make the GPIS take shape. One
possible alternative to using this circular prior is to initialize
the mean of the GPIS to some positive value.
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Fig. 8. GPIS with depth and tactile data on round square jars using circular
prior of 0.2 m diameter as opposed to 0.03 m diameter for all other plots.

VI. CHALLENGES & FUTURE WORK

One of the most noticeable challenges with GPIS is that as
more measurements are added it very quickly becomes slow
(computation time per iteration is shown in Fig. 9). Although
GPIS are very expressive this run-time increase limits the
ability to scale to more complex scenes with multiple objects.

Towards the future, in order to improve this computation
time, we are interested in the idea of grouping the tactile
measurements. In the tactile measurements we gathered it is
easy to see that a lot of these points are redundant as we just
used raw data and did not do any post processing to make sure
we were only choose distinct measurements. However, instead
of selecting these points it may be possible to group them
into lines or splines and use these units as the measurements.
The thin plate kernel function only takes as input the distance
between points. If we chose lines as measurements then we
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Fig. 9. Time to compute the posterior vs number of iterations or tactile
measurements added.

could use distance from points to lines as as input to the
kernel function. For example, if our line measurement L’ is

atzq + blzy + ¢* = 0, then the kernel function can be
k(L' 27) = 2D(L%, 27)® — 3 D(L*, 29)* +- 4% (10)

Where D(L, x) is the projection distance from a point to a
line.
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Although it is easy to use line representations they may

challenging to use to represent curves such as round objects.

In the near future we will be looking at better alternatives to
line representations.
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