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Abstract

Abstractive text summarizations are found frequently in our daily lives from web
browser searches to news feeds. Neural approaches to perform this task have made
significant progress recently, however, we are still far from producing the level
of abstractive summaries humans do. One particular challenge is that handling of
out-of-vocabulary words, particularly with the use of pointer generator networks,
causes the network to copy words and sentences from the input excessively resulting
in less abstractiveness. In this work we investigate the mechanism that allows this
copying in the architecture introduced by See et al. [1]. We formulate a new model
that produces comparable performance in terms of ROUGE scores and is able to
produce significantly more novel n-grams (at least 30% increase) than the baseline
model.
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2 Introduction

Text summarization is the task of condensing information from a piece of text to a shorter version
while maintaining the main content and meaning of the source text. We encounter summaries
frequently in our daily lives: academic abstracts, news feeds, Google search results, library content
browsing, etc. Natural language processing systems have approached this problems with two methods:
extractive and abstractive summarization. Extractive method construct a summary by picking the
words and sentences directly from the source text. Abstractive method extracts the meaning conveyed
in the source and summarizes it with similar or novel words or phrases.

Successes of encoder-decoder RNN models in natural language translation has led to the use of
generative methods for text summarization [2, 3]. The task of summarization is cast as mapping a
long sequence of words in a source document to a target sequence called summary. Learning this
mapping of many tokens to few tokens is difficult and some of the main problems that arise are
avoiding repetitive decoded sequences or handling out-of-vocabulary (OOV) words. To tackle these
problems See et al. introduced some novel changes to the vanilla RNN+attention architecture [1].
In order to handle OOV words, a novel pointer-network architecture is used where a soft switch
allows the decoder to choose to take words from the source rather than generating a <unk> token.
For reducing the repetitiveness of the output they also introduced a novel method of penalizing for
repetitive attention to the same locations of the attention vector. The model produced by this work
significantly outperformed the state-of-the-art models at the time in terms of ROUGE points.
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Although the method presented by See et al. showed significant improvement over previous imple-
mentations of abstractive text summarization, its mechanism to handle OOV also made the results
less abstractive as it allowed for a path to copy from the source without much restrictions. As
reported, 35% of the outputs were copies of entire article sentences. Even more recent work on using
pre-trained transformer models face the same problem [4]. This excessive copying defeats the goal of
abstractive summarization of making summaries with novel words or phrases. We are interested in
whether it is possible to bias the pointer network to only copy words from source if they are OOV, so
as to prevent it from being able to copy entire sentences.

In this work we investigate further into this copying behavior and potentially how the pointer-generator
architecture might be related to it. Particularly, we look into the value of the soft-switch pgen and how
it affects the rate at which the model copies words from the source. We hypothesize that although
the pointer-generator network is intended to activate mostly when the source is an OOV word, it
actually learns to excessively copy words from the source. Extractive summarization is generally less
expensive and grammatically correct so it would make sense for the network to learn a model that
likes to copy and paste. Particularly we look into the relationship between pgen and when n-grams
are contained in the source or not.

Inspired by this problem of excessive copying, we also explore a novel method of including a new
loss term during training to discourage the model from copy words. This loss term formulation
penalizes non-zero values assigned to attention vector elements that are not OOV. Our results show
that although this method yields lower ROUGE values, the model is able to increase the amount of
novel n-grams it generates.

3 Related Work

3.1 Extractive Summarization

Extractive summarization create a summary by identifying the most salient sentences in the source
text. In that view, extractive summarizers models are sentence classifiers that score each sentence on
their saliency. SummaRuNNer by Nallapati et al. [5] is an early and successful work in this area that
adopted LSTMs with attention to tackle this problem. Narayan et al. approached the problem with
Reinforcement Learning by training to directly maximize the ROUGE score of the output [6]. Liu et
al. has achieved the state-of-the-art ROUGE score results by adapting the BERT transformer model
to extractive summarization [4].

3.2 Abstractive Summarization

Abstractive summarization approaches the problem more like a sequence-to-sequence mapping
where the encoder maps input tokens to a intermediate representation (hidden states) and then a
decoder sequentially rolls out the sentence token-by-token. This structure allows us to generate the
output based on a language model such that we could potentially create new sentences to describe a
meaning or idea. Abstractive summarization is a more useful approach as it is able to compress ideas
from multiple sentences into less sentences. In that sense, it technically can achieve more compact
summaries than extractive methods. Rush et al. was one of the first to use neural encoder-decoder
architecture for text summarization. Nallapati et al. improved on this work by adapting it to larger
data sets (CNN/Daily Mail) and by encoding longer sequences of input [2]. As mentioned previously,
the work by See et al. has been a break through in this area by reducing repetitiveness and handling
OOV words with pointer networks. Other work have approached the problem with reinforcement
learning [7], or multi-agent encoders [8]. Recent work on abstractive summarization have produced
state-of-the-art performance uses BERT transformer adapted for both extractive and abstractive
summarization [4].

4 Approach

4.1 Investigating Copying

The first part to this work investigates the cause of copying by the model proposed in [1]. The
architecture used by See et al. builds on top of a single-layer bidirectional LSTM with an attention
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layer as the one presented in [9]. The component of the architecture that handles copying of OOV
words is a hybrid between the baseline encoder-decoder RNN and pointer-generator network [10].
As explained previously, this novel architecture allows pointing from the attention vector in order to
copy OOV words that the encoder is unable to map because of their absence in the embedding space.
Copying is done through a soft switch variable pgen defined as follows:

pgen = σ(wT
h∗h∗t + wT

s st + wT
x xt + bptr) (1)

where h∗t is the context vector, st is the decoder state, xt is the decoder input and wT
h∗ , wT

s , wT
x and

bptr are learnable parameters.

The final output of the model is a distribution over the vocabulary

P (w) = pgenPvocab(w)︸ ︷︷ ︸
PDEC(w)

+ (1− pgen)
∑

i:wi=w a
t
i︸ ︷︷ ︸

PPTR(w)

(2)

This equation’s first term is the contribution from the decoder output (we will refer to this as PDEC

term) and the second term is the contribution from the pointer from the attention (we will refer to
this as PPTR term). Note that for the addition of the two terms to be possible the vocabulary size is
augmented to the size of max vocabulary size plus number of OOV words (e.g. 50k + 10 if there
are 10 OOV words in the source). In order to find when the model is copying we can compare the
values of PDEC and PPTR that correspond the words that are copied from source and the words that
are novel. We will look into the relationship of these two terms for 1-gram, 2-gram, 3-gram, 4-gram
and full sentences. We also look into the value of pgen for novel vs copied n-grams as this is also an
indicator of the tendency to copy words from the input.

Figure 1: Pointer Network Architecture. Figure taken from See et al. [1]

4.2 Copy Loss Mechanism

For the second part of this work, we propose a method to yield a new model that is discouraged from
copying words that are not OOV. The overall architecture is very similar to the one introduced by See
et al. shown in Fig. 1. We formulate a new loss term to penalize for the copying of words that are not
OOV. We take the sum of output of the pointer-generator PPTR(w) for each word that is not an OOV
word. To do this we build a vector y<unk> the size of the vocabulary plus number of OOV words
where its value is 1.0 at indexes that corresponds to OOV and 0.0 otherwise. We refer to this loss
term as "copy loss" and it is formulated as follows:
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copyloss = (1− y<unk>)
TPPTR(w) (3)

= (1− y<unk>)
T (1− pgen)

∑
i:wi=w

ati (4)

We add this to the total loss term used by See et al. (including the coverage loss) which results in the
following expression for each time step t:

losst = − logP (w∗
t ) + λ1

∑
i

min(ati, c
t
i) + λ2(1− y<unk>)

T (1− pgen)
∑

i:wi=w

ati (5)

Where λ1 and λ2 are hyper-parameters.

The intuition behind this is that high values of PPTR(w) causes words to be copied over from the
attention vector. However, if the words are not OOV then we should penalize this behavior.

5 Experiments

5.1 Data

We use the CNN/Daily Mail dataset collected by Hermann et al [11] which has been widely used
in abstractive summarization work[2, 1, 4]. This corpora contains roughly a million news stories
collected from scraping the website of the two news media. Articles contain 781 token on average
paired with summaries of 3.75 sentences or 56 token on average. We follow the same method as
Nallapati et al. and See et al. [2, 1] to split the data into 287,226 training pairs, 13,368 validation
pairs and 11490 test pairs. Each pair is one article and one summary. If the source article is longer
than 400 tokens we crop it to this maximum length. This source text is the input to the network
and the output is a sequence of probability distributions P (w). The output is then compared to the
reference summary to generate a loss value. We chose not to anonymize the entities referenced in the
source text to avoid prepossessing overhead.

5.2 Evaluation method

For our first experiment on investigating the baseline copy behavior, we want to define metrics that
indicates whether the model is favoring copying and whether the final decoded output was indeed
a result from copying from source. One metric we will look into is the values of PDEC(w) and
PPTR(w) as defined in Equation 2. As the model’s output distribution is the sum of these two terms,
their relative values will determine whether the decoded word was mostly influenced by copying or
by the vanilla RNN output. We will also look into the value of pgen(w) as this is the soft-switch value
that scales the decoder output distribution and 1− pgen(w) scales the attention distribution. pgen(w)
is a less clear metric of whether copying will actually dominate the result as the decoder output and
the attention vector are distributions over sets of different cardinality, thus, their values on average are
different. However, since this value scales the entire distribution it indicates whether during decoding
the model favors copying from source. In contrast, the PDEC(w) vs PPTR(w) metric tells us whether
the final result was mostly influenced by copy or not.

In the second experiment we want to investigate whether adding the copyloss term helps the model (i)
generate more novel words, (ii) copy less for words that are not OOV and (ii) improve its performance
in terms of ROUGE score. We will evaluate (i) by looking at what percentage of n-grams in the
output summaries are also present in the input source, similar it is done by See et al. For (ii) we will
use the same metrics as in the first experiments to determine whether this new model still tries to copy
for non OOV words. And for (iii) we will measure the overall summary sentence performance using
ROUGE (R-1, R-2 and R-L) scores as it is more widely used metric for rating sentence summaries.
We used the ROUGE-1.5.5 script with a python wrapper [12] to compute ROUGE F1 scores.

5.3 Experimental details

5.3.1 Baseline and copy loss model

We first try to replicate the results in the work by See et al. [1] but using a PyTorch implementation
[13]. We train the model including pointer-generator and coverage mechanism using the same
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parameters: a vocabulary size of 50k, learning step with Adagrad with a rate of 0.15, an initial
accumulator of 0.1, gradient clipping at a norm of 2.0 and no regularization. We also limit the length
of the source document to 400 tokens and the length of the summary to 100 tokens during training
and 120 tokens during testing. We use a value of 1.0 for the hyper-parameter λ of the coverage loss.

We train the model with the same parameters for 500k iterations on a computer with Intel Core
i7-9700k with GPU 8-core NVIDIA GTX-2080. Training time was about 5 days. See et al. trained
the model without coverage first and then added coverage for 2000 iterations to get their high ROUGE
scores. We found it unnecessary to do this as we only wanted to obtain a model we could use as
reference.

For the copy loss model proposed in this work we use exactly the same parameters for training,
but we add the additional copyloss term as shown in Equation 5. We use a value of 1.0 for the λ2
hyperparameter.

5.3.2 N-gram novelty vs. pointer-generator values

In test time, we record the values of pgen, PDEC(w) and PPTR(w) for every decoded word in each
article. We then group these values by whether the n-gram they correspond is novel or not. For
2-gram, 3-gram and so on, we take the average of the values corresponding to those words.

5.4 Results

5.4.1 Baseline model PDEC vs. PPTR

We have reported our results comparing values of PDEC and PPTR as boxplot for the baseline model
in Fig. 3. Plots compare PDEC and PPTR corresponding to n-grams or sentences that are novel (left
side of each plot) and corresponding to words that are found in the source text (right side of each
plot). Each boxplot shows the median as the horizontal line inside the box, bottom and top of the box
correspond to 25th and 75th percentile respectively, and whiskers show the min and max values in
the data. An immediately noticeable pattern is that for all n-grams and sentence plots, the values of
PPTR is significantly higher than that of PDEC when the decoded word is contained in the source
text. This relationship is what we expected and agrees with our hypothesis that the pointer generator
network portion of the architecture is related to the copy behavior.

5.4.2 Copy loss model PDEC vs. PPTR

Figure 2: Plot shows percentage of novel [1,2,3,4]-
grams in generated summaries from baseline model,
our model and reference summary.

Results for our copy loss model (Section
4.2) comparing values of PDEC and PPTR

are shown as boxplots in Fig. 4. We can
see that for all n-gram and sentence exper-
iments the words that correspond to copied
words do not have a higher PPTR com-
pared to PDEC anymore. This shows that
we were able to reduce the tendency for the
model to copy words through the pointer
network. Another observation is that PDEC

is higher than PPTR for all novel n-grams,
as it is not the case for the baseline model.

5.4.3 Copy loss model performance

Results for the output summaries by the
copy loss model are reported in Table
1. The results were slightly worse in
all ROUGE categories than the baseline
model’s results. This was expected as many
of the reference summaries might be exact
phrases from the input source and by re-
ducing the copying behavior those copied phrases might not contribute to the high score anymore.
However, if we look at our results on novelty of n-grams reported in Figure 5.4.1, we can see that

5



Figure 3: Comparison of PDEC vs PPTR for baseline model [1,2,3]-gram and sentences.

Figure 4: Comparison of PDEC vs PPTR for baseline model [1,2,3]-gram and sentences.

our new model successfully boosts the amount of novel n-grams compared to the baseline model.
For example, 75% of the sentences are novel compared to 65% in the baseline which is a significant
increase.

5.4.4 pgen values for novel vs. copied words

We also report the results of pgen corresponding to novel and copied words for both baseline and
copy loss models. An observation is that for the 1-gram plot, pgen values are higher for novel words
and and lower for copied words for the baseline model but not for our model. This is consistent with
the results shown in Figure 3 and 4. This higher value of pgen informs us that during beam-search
decoding the model is assigning a higher value to the attention distribution across all beams. So the
behavior observed from the PDEC vs PPTR results is not just that coincidentally the attention value
corresponding to the copied word was higher. It is indeed the pointer network weighing more for the
word to be copied from source words. This difference in pgen is not observed for the copy loss model
1-gram output.
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ROUGE-1 ROUGE-2 ROUGE-L
abstractive model [2] 35.46 13.30 32.65

pointer-generator + coverage 38.94 17.08 35.90
pointer-gen + cov. + copyloss 37.88 16.37 35.19

Table 1: ROUGE F1 scores achieved by baseline model from See et al. [1] trained by us in PyTorch.
We also include, for reference, scores from Nallapati et al. [2] which we obtained from their paper.
All ROUGE scores have a 95% confidence interval of at most ±0.24. The scores achieved by our
new model are lower than that of the baseline model. We expected this since we are discouraging the
copying behavior so it won’t perform as well for those reference summaries that contain a significant
amount of n-grams from the source, so it wont achieve high n-gram overlap which is what ROUGE
metric quantifies.

Figure 5: Boxplots show values of pgen corresponding to novel and copied n-grams and sentence. We
compare the values from baseline model and ours. Results for 1-gram clearly show that the baseline
favors copying with a higher pgen value.

6 Analysis

It is clear from our results that the pointer generator network of the baseline model have a significant
effect in copying of words. It is confirmed through not only comparing results of PDEC vs PPTR, but
also by looking at values of pgen for novel and copied words shown from Figure 3-5.

The new model is able to correct for the copying behavior with its novel copyloss formulation.
Although it performs a little worse in terms of ROUGE F1 scores as seen in Table 1, it improves the
amount of novel n-grams it generates significantly as seen in Figure 5.4.1. But from this plot we can
see that there is still a lot of room for improvement as both baseline and new model produce far less
novel n-grams compared to the reference summaries. We can see this also from the example shown
in Table 2 that the copy loss model only makes small improvements in abstractiveness (replaced
believe with say). This level of abstraction is still far from human capabilities of being able to extract
meaning and synthesize new sentences.

We also observed that the copy loss model was more likely to produce more repeated n-grams
although the coverage mechanism from the baseline model was used. This is most likely a problem
caused by the mutual interference of coverage and copy loss signals.

7 Conclusion and Future Work

In this work we have shown that the pointer generator network introduced by See et al [1] will learn
to copy words from the source article if trained using the loss expression proposed in their paper. In
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Article (truncated): Police in the Indian city of Malegaon , in the western state of Maharashtra,
are requiring identity cards for an unusual group of residents: Cattle. Following a recent state-
wide ban on the sale and consumption of beef, authorities in the city have asked residents to take
a ’mugshot’ of their cattle and submit it to the police . Along with the photograph, the residents
have to give information about their animal’s ’ unique features , ’ such as the coloring and age
of the cow , along with the length of its tail and other distinctive characteristics . Police officials
believe this is the only way to solve cow slaughter cases and enforce the law .
...
Reference: authorities in the indian city of malegaon have asked residents to take a ‘ mugshot
’ of their cattle . cows are revered by the majority hindu population , and many parts of the
country have laws banning the slaughter of cattle . officials in malegaon believe this is the best
way to solve cow slaughter cases and enforce the law .
baseline: residents have asked residents to take a ‘ mugshot ’ of their cattle and submit it to the
police . along with the photograph , the residents have to give information about their animal ’s ‘
unique features , ’ such as the coloring and age of the cow . police officials believe this is the
only way to solve cow slaughter cases and enforce the law .
copy loss: police in the indian city of malegaon , in the western state of maharashtra , are
requiring identity cards for an unusual group of residents : cattle . the residents have to give
information about their animal ’s ‘ unique features , ’ such as the coloring and age of the cow ,
along with the length of its tail and other distinctive characteristics . police say this is the only
way to solve cow slaughter cases and enforce the law .

Table 2: One example of decoded output using baseline and copy loss model. As can be seen from
baseline output, most words are copied from the source article. Copy loss model output has some
novel n-gram instances such as "police say this is" rather than copying "police officials believe this
is". However, this result is still far from the level of abstraction that humans can produce.

order to help the model produce more abstractive summaries, we introduced a novel modifications to
the training is able to significantly reduce the copy effect while not compromising too much on the
summary quality in terms of ROUGE F1 score.

Although we increased the number of n-grams our model is able to generate compared to the baseline,
the output sentences are still very similar to the input articles sentences with maybe some words
replaced with synonyms or simple shortening of a sentence as seen in Table 2. These models are
still not able to, for example, take multiple sentences and summarize their meaning in one sentence.
Another limitation of our model is that is it not easy to balance the loss values between coverage loss
and copy loss. See et al. [1] also had this problem with coverage loss and teacher forcing loss term.
The strategy used there was to train without coverage for 600k steps and then strain with coverage
loss for 2k steps more. We did not find a strategy similar to this that worked well, so a potential future
direction is look into a more systematic way to determine the optimal training schedule to balance
losses.

Other interesting future directions would be to include other datasets such as XSum [14] where
summaries contain less details and are more concise. The CNN/Daily Mail datasets provide multiple
highlight sentences for each news article where some sentences are summaries and others are details
meant to be eye catchy. If this trend is consistent across the current data set, it might cause the model
to generate random details instead of information compression.

Another limitation of this work is that it is still not able to take very long sequence inputs (we crop at
400 tokens). An interesting future direction would be to explore the possibility of encoding tokens
conditioned on their sentence location within a paragraph. This could allow us to leverage the fact
that the more important sentences appear in certain parts of a paragraph and to pay more attention to
those tokens than those in other sentences that may be details.
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