
Physical Manipulation of Virtual Holograms Using Proxies

Michael A. Lin
Stanford University

Department of Mechanical Engineering
mlinyang@stanford.edu

Alexa F. Siu
Stanford University

Department of Mechanical Engineering
afsiu@stanford.edu

Abstract

Head-mounted optical see-through displays allow users
to interact with digital content in more immersive ways.
While much work has been done on the display side, we still
rely on abstracted controls for input/output. In this work,
we introduce a method for more natural interaction with
virtual holograms . Our method uses physical proxies as
handles for manipulating holograms. To achieve this, we
use a probabilistic Bayesian model for 3D -object tracking
and pose estimation. This method only requires a generic
model of the object that is being tracked and achieves rea-
sonable real time performance. We show its implementation
and system integration with the Microsoft HoloLens.

Figure 1. Light saber hologram overlaid on a physical proxy as
seen from the HoloLens

Note: Michael Lin is using this project for both CS231A
and EE267 final projects.

1. Introduction
Recent technological advances in head-mounted optical-

see-through displays (i.e. Microsoft HoloLens), have
bridged the gap between the digital and the physical world.
These mixed reality devices combine world tracking and
head-mounted displays to show 3D image content that is
anchored to the physical world. However, these efforts have
mostly just increased use of humans visual display channels
while still relying on the traditional point-and-click input
for manipulating digital content.

In this project, we hope to bridge the gap between the in-
put controls (i.e. pointer, mouse, keyboard) and the graph-

ical output (i.e. the display) such that users can leverage
the rich affordances of physical objects. Billinghurst et. al.
defined Tangible AR interfaces as those in which: 1) vir-
tual objects are registered to a real physical object (tangible)
and 2) tangibles are used to manipulate the virtual objects
[1]. Towards this vision of seamless tangible AR, we pro-
pose a novel way of interacting with holograms embedded
in the real world. We propose using physical objects that
are typically found in our surroundings (e.g. a smartphone,
an eraser, a water bottle, a coffee mug etc) as handles or
physical proxies to which holograms can virtually attach.
Instead of using abstracted controls, the user would be able
to manipulate the hologram just as they would manipulate
any other physical object.

The ideal system would be able to track any arbitrary
object chosen by the user as a proxy. It would then super-
impose a hologram at the grasping location. For example,
if the hologram were a light saber and the proxy was a red
box, the system would align and overlay the sabers handle
to the box as this is considered the human choice of the
sabers graspable region, as shown in Figure 1.

1.1. Design considerations

We cover the main challenges we need to address in or-
der to achieve the system we described. This requirements
provided important metrics in guiding our solution imple-
mentation.

Real-time performance. The proposed solution should
be able to process the RGBD frames in real-time in order to
allow true interactivity with the objects.

6-DOF pose estimation. Since the system needs to ren-
der a hologram overlaid on the physical object, we must be
able to recover the object pose in order to correctly render
the hologram.

Uncalibrated environment/minimal overhead setup. If
this is a system to be used for quickly testing prototypes
or in gaming applications, we want it to have minimal setup
requirements such as camera calibration, parameter tunings,
and reliance on markers.

Robust to occlusions. We envision users handling the ob-

1

jects with their hands, therefore the tracking solution should
be robust to occlusion otherwise the interaction cannot hap-
pen smoothly.

Low computational cost compatible with head-mounted
display. The algorithm would ideally run untethered in the
head-mounted display. In this project, we use the Microsoft
HoloLens. Wearable computing devices are not as powerful
as desktop computers nor do they allow easy computation
in the GPU therefore the solution should not be computa-
tionally heavy.

Based on the aforementioned design considerations, we
propose using a probabilistic model-based tracking algo-
rithm as detailed by Yuheng et al. [2]. This algorithm
enables real-time tracking on a CPU with enhanced speed
if also parallelizing computation on the GPU; but requires
a model of the tracking object. In the rest of this paper,
we discuss our implementation and integration with the
HoloLens.

2. Related Work
2.1. Physical interaction in Augmented Reality

Billinghurst et al. [3] studies the idea of tangible aug-
mented reality where holograms were locked onto markers
such that multiple AR headset users would see the same
holograms and share the same interaction space.

Garret et al. [4] presented a tracking method that used
RGB-D and achieved reasonable accuracy, however, they
required of very accurate model of the object being tracked.
Also, they limited the experience to just a display of the
holograms on a 2D screen rather than using an 3D display
such as the HoloLens.

Araujo et al. [5] shows a very interesting experiment
where a robotic arm moves its end-effector to where the
user is about to interact with a hologram to provide the ap-
propriate kinesthetic feedback. Users wear a virtual reality
display. Although it is a very interesting idea, it would not
work as well for augmented reality display since seeing the
robotic arm moving towards your hand would significantly
change the experience. Also, their implementation does not
allow the user to have other types of interaction with the
object such as holding it or picking it up.

2.2. Methods for real-time tracking with computer
vision

Some of the earliest methods for real-time markerless
tracking are edge-based. One example is that proposed by
Lowe et al. [6]. In their method, parametrized 3D models
are iteratively matched to image features. The trade-off is
that it requires reliable feature recognition with few outliers
to minimize matching errors. Moreover, increasing number
of features to match results in higher computational cost.

Koller et al. [7] proposed a similar method but instead of

Figure 2. System setup

object specific models, they use generic models represented
by 3D polyhedrals. They formulate a distance function for
matching the model features to the image extracted features.
At each step, solve for a pose estimate by minimizing this
function using the Levenberg-Marquardt algorithm.

Rad et al. [8] approached the problem of markerless
tracking by training a CNN on RGB-D data set of table-
top objects. Although this method seem to generalize for
tracking pose of similar object to those in the dataset, it is
not robust to object occlusions.

Particle filtering methods for 3D objects have been pro-
posed. One example is that by Choi et. al. [9]. This method
requires a known 3D mesh model. Each particle’s likeli-
hood is evaluated on the RGBD images over time. Because
of the large number of particles, the computational cost is
really high and real-time performance can only be achieved
by parallelizing computation on the GPU.

Bibby et. al. proposed a method using pixel-wise poste-
riors [10]. This method is fast and relies on image segmen-
tation based on an object color appearance model. While
their paper shows performance when tracking only in 3D,
they mention its extensibility to 3D object tracking.

[11] and [2] extend the method by Bibby et. al. to track-
ing in 3D. One important difference is that they optimize for
likelihoods to find a pose estimate. We adapted this method
to use for tracking in the HoloLens.

3. Technical Approach
Our overall system, as illustrated in Figure 2, consisted

of three main components: Microsoft HoloLens for display-
ing 3D information, Microsoft Kinect used for real-time
tracking and simple physical objects found in our everyday
surrounding, such as coke cans, pencil case or tennis balls.

3.1. System Integration with HoloLens Platform

Although the authors of the tracking algorithm provide a
full implementation, there is no documentation or support in

2

either creating models for new objects or, more importantly
for us, no support for integrating with other platforms such
as HoloLens.

We developed the algorithm using Unity3D/C# so that it
was compatible with the HoloLens. Despite the Hololens
having a depth camera, currently developers are only given
access to its RGB camera. Since we required depth data
for tracking, we used data from an anchored Microsoft
Kinect v2 connected to a server computer (Figure 2). The
Kinect allows us to obtain both RGB frames (1920x1080)
and depth frames (512x424). We align the RGB and depth
frames by obtaining calibration parameters from the Kinect
cameras which results in frames of 512x424. To obtain the
3D point cloud necessary for the algorithm, we unproject
the points to 3D using the camera calibration matrix K.

In our system setup, the server computer handled the
algorithm computation and output a pose estimate which
was communicated to the HoloLens using network sockets
(TCP protocol). This pose estimates KPO are relative to
the Kinect frame of reference K. The HoloLens is capable
of tracking the room using Simultaneous Localization and
Mapping (SLAM) and then display holograms fixed in the
room or world reference frame W . In order to update the
pose of the holograms in W we do an initial alignment to
the Kinect with the HoloLens (shown as the white box over-
layed on the Kinect in Figure 3). This alignment gives us the
isometric transform (pose and rotation) from the world ref-
erence frame to the Kinect WMK. Then in order to set the
position of the hologram object we transform it by the in-
verse to obtain the correct position in world reference frame

WPO = (WMK)−1(KPO) (1)

Notation1

3.2. Real-time Tracking with the Kinect

3.2.1 Generating the Model as SDF

Yuheng et al. proposed to represent the model as a bag of
voxels using 3D Signed Distance Function (SDF) since it is
a convenient way of encoding the model surface or distance
to the surface. Figure 4 Left shows an example of a 2D
signed distance function for a circle. The contour of the
circle is marked as 0. In the 3D representation we create
a 200mm x 200mm x 200mm cube of voxels in which we
center our model as shown in Figure 4 Right. Intuitively
this is a good search space setup, since the point cloud data
from the sensor is projected on these voxels and the gradient
of the distance value informs which way to update the pose.

As mentioned in earlier section, the authors did not in-
clude well documented method for generating a bag of
voxel for any object. As part of our contributions to this

1The notation I use here is APB the transform of reference frame B
from reference frame A

Figure 3. Kinect and HoloLens reference frames

work, we have implemented a Matlab script that takes in
any mesh that fits within a 200mm x 200mm x 200mm and
outputs a SDF model that can be quickly loaded into the
tracking algorithm. With this tool we are able to find any
object in our surrounding and import it as a model. Steps to
do this are simple:

1. Find an object that has a uniform color. (e.g. a banana
that is a uniform yellow color)

2. Measure it roughly and approximate it with a primitive
shape such as cylinders, cubes or spheres.

3. Create the mesh quickly in a 3D mesh editing tool such
a Blender.

4. Pass it through our custom Matlab script to obtain the
model as SDF.

3.2.2 Generative Model

The graphical model for the tracking algorithm is illustrated
in Fig. 5. The object shape model Φ and the object pose p
inform the observed RGBD image Ω, which we refer to as
appearance model. The pose is defined as the 6 degrees-
of-freedom of the rigid object we are trying to track which
we will denote as just p in this section for simplicity. The
object shape model is represented as a bag of voxels (V =
{in, out}) as explained previously. This is an efficient way
of representing surface geometry. Finally, our sensor data is
obtained as a point cloud representation of the environment.

To solve for a pose using these three components, we
want to maximize the likelihood P (Ω | p,Φ) as a function
of p. We know each pixel in Ω is generated from a unique

3

Figure 4. Signed distance function illustration

voxel sampled from Φ. We assume that pixels are condition-
ally independent. We define the image by its pixels {x, y}
and its corresponding projected voxel V . Using Bayes and
our generative model:

P (p,Φ | {xi, yj , Vi(j)}) ∼ P ({xi, yj , Vi(j)} | p,Φ)P (p,Φ)

The first term in this equation is the prior, the second term
the likelihood, and the third term the prior. The likelihood
term usually dominates in this equation. Therefore, even
without a good prior and given a hypothesis, the likelihood
is a good estimate of how good the hypothesis is. The
goal then is to find the maximum likelihood estimate for
a given pose hypothesis. Since we assume pixel-wise inde-
pendence, the likelihood is computed as the product over all
pixels. Moreover, if we assume V is fixed and marginalize
the equation over V , we obtain the likelihood as:

P (x, y | p,Φ) =
∑

k=in,out

{P (x | Φ, p, V = k)P (V = k | y)}

(2)
The object appearance model is represented as color his-
tograms of the foreground and background. The foreground
is the region which contains the object of interest while the
background is everything else. To capture the foreground
and background , we represent these as uniform distribu-
tions using the Dirac delta and Heaviside functions respec-
tively. The Heaviside function is positive for any value
above 0 and the Dirac delta is positive only at 0 which
is how our SDF representation of the model illustrate on
the object surface (SDFvalue = 0) and outside the object
(SDFvalue > 0). The Heaviside and Dirac delta functions
definitions are:

H(z) =
1

1 + e−z/2
(3)

δ(z) =
2e−z/2

(1 + e−z/2)2
(4)

Using these definitions, the likelihood of a single pixel x, y
on the object surface (foreground) is:

P (x, y | Φ, p, V = on) =
δ(Φ)∑

Ω

δ(Φ)
(5)

Similarly, the likelihood of a single pixel outside the object
surface (background) is:

P (x, y | Φ, p, V = out) =
H(Φ)∑

Ω

H(Φ)
(6)

Substituting the likelihoods from Eqns. 5 and 6 into Eqn. 2
and taking logs, we obtain the energy function:

∂E

∂p
=

∑
Ω

{
(P (y|V = in) ∂δ∂Φ + P (y|V = out)∂H∂Φ)

P (x, y|Φp)

∂Φ

∂X

∂X

∂p
}

(7)
This algorithm is set as an optimization problem solved

using the gradient-descent method of Levenberg-Marquardt
(LM) to solve for p. At each frame the goal is to maximize
the posterior probability of the pose given the current depth
image and 3D shape represented as the SDF. This probabil-
ity is calculated at a per-pixel likelihood and its energy func-
tion is defined as the sum of log-likelihoods of this proba-
bility over all pixels. Finally, the gradient that is iteratively
minimized, is given by the change in energy over the change
in pose.

Figure 5. Graphical model of the probabilistic model

4. Results
Figure 6 shows a sequence of frames when tracking a can

and the resulting foreground/background segmentation and
posterior probability estimations. The foreground is defined
as everything inside the blue box and the background is ev-
erything outside of it. As the can moves around , it can be
seen that the box moves with it. The green pixels highlight

4

Figure 6. Sequential frames from tracking a red can. The region inside the blue box shows the segmented foreground; everything outside
the box is labeled as background. As the can moves around, this box moves with as a result of the algorithm tracking. The green overlayed
pixels highlight regions where the posterior probability estimate was greater than 0.5.

regions where the estimated posterior was above 0.5. It can
also be seen from the image that most green pixels are con-
centrated on the red can. Figure 6 shows the results when
using the pose estimate to overlay an object.

As a first pass implementation, we used the Kinect’s full
frame data (512x424 = 220000 pixels). This resulted in
slow computation. We made two optimizations to increase
speed:

1. Each frame was downsampled by four; resulting in
13000 pixels per frame. Moreover we added a smooth-
ing filter so that each resulting pixel was the result of
averaging its four neighboring pixels.

2. Since we segment the image with foreground and
background, we limited most computations to be per-
formed only on the bounding box region. This highly
sped up the process since the box region is only a frac-
tion of the entire frame.

4.1. Tracking Quality

We tested the tracking algorithm with a set of simple ob-
jects that can be found in your surroundings such as a pair
of sunglasses, a tennis ball, a banana and a IKEA mug as
shown in Figure 7. The models for these were made quickly
following the steps specified in section 3.2.1. Our results
from tracking the objects are shown in Figure 8. One issue
we noticed is that objects that present axis symmetry such

as the coke can, the mug and the tennis ball yield a pose that
is not stable in their axis of symmetry.

Another test we performed is shown in Figure 9. These
images show the whole pipeline running, so they show the
view from the HoloLens with the light saber hologram su-
perimposed. In this sequence of images we were aiming at
testing occlusion with the hands. As can be seen, the algo-
rithm was very forgiving even with two hands holding onto
the object being tracked.

Figure 7. Sample of objects that were tracked.

5

Figure 8. Tracking result on multiple different objects.

5. Limitations & Future Work
Parallelizing computation on the GPU was not done for

our implementation therefore there is a limit to how fast the
user can interact with the objects. When the user moves
too fast the calculated energy may drop and the algorithm
loses track of the object. To recover, this requires the user
to place the object back on the last pose before it was lost.
Possible future work could look into how we can minimize
losing track of the object. One possibility is to use not only
the current frame for pose estimate but also incorporate pre-
vious frames. We know that it is not physically possible for
the object to jump a large distance from one frame to the
next so based on the previous frame where the object was
last seen we could perform a search to recover the object
within that region.

Since we couldn’t run the algorithm from the HoloLens
directly but instead data was sent over the network, this in-
creased the latency in tracking. Moreover, taking images
from the head-mounted display doesn’t result in images
that align with what the user wearing it would see. This is
simply due to camera misalignment and differences in how
users may wear the headset. In future work we would like
to improve the way we align the Kinect with respect to the
HoloLens.

6. Conclusion
In this paper we have shown real time markerless track-

ing and 6-DOF pose estimation robust to hand-occlusion
implemented for use in the HoloLens. By providing the im-
plementation of the tracking algorithm in Unity we open to
the possibility of having an all-in-one package where user
can create models of objects they wish to track using the
Unity user interface and immediately load it into the algo-
rithm. This platform enables new opportunities for inter-
action input and output in AR. We have merely introduced

the concept and believe there is much more to explore. For
example, what if we could also make virtual holograms in-
teractive? If we could also track the users hands, we could
also give holograms behaviors that react to user input. You
could have a hologram with a button and press the button
by approaching it with your finger.

7. Github Repository
Source code for the HoloLens Unity 3D application,

TCP protocol script in C++, and SDF generation script
in Matlab can be found in: https://github.com/
michaellin/HoloProxies.

References
[1] Mark Billinghurst, Raphaël Grasset, Hartmut Seichter, and

Andreas Dünser. Towards ambient augmented reality with
tangible interfaces. Human-Computer Interaction. Ambi-
ent, Ubiquitous and Intelligent Interaction, pages 387–396,
2009.

[2] Carl Yuheng Ren, Victor Prisacariu, Olaf Kaehler, Ian Reid,
and David Murray. 3d tracking of multiple objects with iden-
tical appearance using rgb-d input. In 3D Vision (3DV), 2014
2nd International Conference on, volume 1, pages 47–54.
IEEE, 2014.

[3] Mark Billinghurst, Hirokazu Kato, and Ivan Poupyrev. Tan-
gible augmented reality. ACM SIGGRAPH ASIA, 7, 2008.

[4] Timothy Garrett, Saverio Debernardis, Rafael Radkowski,
Carl K Chang, Michele Fiorentino, Antonio E Uva, and
James Oliver. Rigid object tracking algorithms for low-
cost ar devices. In ASME 2014 International Design En-
gineering Technical Conferences and Computers and Infor-
mation in Engineering Conference, pages V01BT02A043–
V01BT02A043. American Society of Mechanical Engineers,
2014.

[5] Bruno Araujo, Ricardo Jota, Varun Perumal, Jia Xian Yao,
Karan Singh, and Daniel Wigdor. Snake charmer: Physi-
cally enabling virtual objects. In Proceedings of the TEI’16:
Tenth International Conference on Tangible, Embedded, and
Embodied Interaction, pages 218–226. ACM, 2016.

[6] David G Lowe. Robust model-based motion tracking
through the integration of search and estimation. Interna-
tional Journal of Computer Vision, 8(2):113–122, 1992.

[7] Dieter Koller. Moving object recognition and classification
based on recursive shape parameter estimation. In Proc. 12th
Israel Conf. Artificial Intelligence, Computer Vision, volume
2728, page 2, 1993.

[8] Mahdi Rad and Vincent Lepetit. BB8: A scalable, accu-
rate, robust to partial occlusion method for predicting the 3d
poses of challenging objects without using depth. CoRR,
abs/1703.10896, 2017.

[9] Changhyun Choi and Henrik I. Christensen. RGB-d object
tracking: A particle filter approach on GPU. In Intelligent
Robots and Systems (IROS), 2013 IEEE/RSJ International
Conference on, pages 1084–1091, 2013.

6

https://github.com/michaellin/HoloProxies
https://github.com/michaellin/HoloProxies

Figure 9. Sequential frames from tracking a red box while being heavily occluded by user’s hand.

[10] Charles Bibby and Ian Reid. Robust real-time visual tracking
using pixel-wise posteriors. Computer Vision–ECCV 2008,
pages 831–844, 2008.

[11] Carl Yuheng Ren, Victor Prisacariu, David Murray, and Ian
Reid. Star3d: Simultaneous tracking and reconstruction of
3d objects using rgb-d data. In Proceedings of the IEEE
International Conference on Computer Vision, pages 1561–
1568, 2013.

7

